Joint Mention Extraction and Classification with Mention Hypergraphs
نویسندگان
چکیده
We present a novel model for the task of joint mention extraction and classification. Unlike existing approaches, our model is able to effectively capture overlapping mentions with unbounded lengths. The model is highly scalable, with a time complexity that is linear in the number of words in the input sentence and linear in the number of possible mention classes. Our model can be extended to additionally capture mention heads explicitly in a joint manner under the same time complexity. We demonstrate the effectiveness of our model through extensive experiments on standard datasets.
منابع مشابه
Customizing an Information Extraction System to a New Domain
We introduce several ideas that improve the performance of supervised information extraction systems with a pipeline architecture, when they are customized for new domains. We show that: (a) a combination of a sequence tagger with a rule-based approach for entity mention extraction yields better performance for both entity and relation mention extraction; (b) improving the identification of syn...
متن کاملDiscriminative Learning for Joint Template Filling
This paper presents a joint model for template filling, where the goal is to automatically specify the fields of target relations such as seminar announcements or corporate acquisition events. The approach models mention detection, unification and field extraction in a flexible, feature-rich model that allows for joint modeling of interdependencies at all levels and across fields. Such an appro...
متن کاملCorefrence resolution with deep learning in the Persian Labnguage
Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...
متن کاملJoint Modeling of Argument Identification and Role Determination in Chinese Event Extraction with Discourse-Level Information
Argument extraction is a challenging task in event extraction. However, most of previous studies focused on intra-sentence information and failed to extract inter-sentence arguments. This paper proposes a discourse-level joint model of argument identification and role determination to infer those inter-sentence arguments in a discourse. Moreover, to better represent the relationship among relev...
متن کاملAn Entity-Level Approach to Information Extraction
We present a generative model of template-filling in which coreference resolution and role assignment are jointly determined. Underlying template roles first generate abstract entities, which in turn generate concrete textual mentions. On the standard corporate acquisitions dataset, joint resolution in our entity-level model reduces error over a mention-level discriminative approach by up to 20%.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015